Effects of 25-Hydroxyvitamin D3 on Proliferation and Osteoblast Differentiation of Human Marrow Stromal Cells Require CYP27B1/1α-Hydroxylase
نویسندگان
چکیده
1,25-Dihydroxyvitamin D(3)[1,25(OH)(2)D(3)] has many noncalcemic actions that rest on inhibition of proliferation and promotion of differentiation in malignant and normal cell types. 1,25(OH)(2)D(3) stimulates osteoblast differentiation of human marrow stromal cells (hMSCs), but little is known about the effects of 25-hydroxyvitamin D(3)[25(OH)D(3)] on these cells. Recent evidence shows that hMSCs participate in vitamin D metabolism and can activate 25(OH)D(3) by CYP27B1/1α-hydroxylase. These studies test the hypothesis that antiproliferative and prodifferentiation effects of 25(OH)D(3) in hMSCs depend on CYP27B1. We studied hMSCs that constitutively express high (hMSCs(hi-1α) ) or low (hMSCs(lo-1α)) levels of CYP27B1 with equivalent expression of CYP24A1 and vitamin D receptor. In hMSCs(hi-1α), 25(OH)D(3) reduced proliferation, downregulated proliferating cell nuclear antigen (PCNA), upregulated p21(Waf1/Cip1), and decreased cyclin D1. Unlike 1,25(OH)(2)D(3), the antiapoptotic effects of 25(OH)D(3) on Bax and Bcl-2 were blocked by the P450 inhibitor ketoconazole. The antiproliferative effects of 25(OH)D(3) in hMSCs(hi-1α) and of 1,25(OH)(2)D(3) in both samples of hMSCs were explained by cell cycle arrest, not by increased apoptosis. Stimulation of osteoblast differentiation in hMSCs(hi-1α) by 25(OH)D(3) was prevented by ketoconazole and upon transfection with CYP27B1 siRNA. These data indicate that CYP27B1 is required for 25(OH)D(3)'s action in hMSCs. Three lines of evidence indicate that CYP27B1 is required for the antiproliferative and prodifferentiation effects of 25(OH)D(3) on hMSCs: Those effects were not seen (1) in hMSCs with low constitutive expression of CYP27B1, (2) in hMSCs treated with ketoconazole, and (3) in hMSCs in which CYP27B1 expression was silenced. Osteoblast differentiation and skeletal homeostasis may be regulated by autocrine/paracrine actions of 25(OH)D(3) in hMSCs.
منابع مشابه
25-Hydroxy- and 1α,25-Dihydroxycholecalciferol Have Greater Potencies than 25-Hydroxy- and 1α,25-Dihydroxyergocalciferol in Modulating Cultured Human and Mouse Osteoblast Activities
Despite differences in the phamacokinetics of 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2) in man, the effects of these and their 1α-hydroxylated forms (1,25(OH)2D3 and 1,25(OH)2D2) on cellular activity of vitamin D-responsive cells have hardly been compared. We studied differences in the effects of these metabolites on cell number, gene transcription, protein ex...
متن کاملHydroxylation of CYP11A1-derived products of vitamin D3 metabolism by human and mouse CYP27B1.
CYP11A1 can hydroxylate vitamin D3 at carbons 17, 20, 22, and 23, producing a range of secosteroids which are biologically active with respect to their ability to inhibit proliferation and stimulate differentiation of various cell types, including cancer cells. As 1α-hydroxylation of the primary metabolite of CYP11A1 action, 20S-hydroxyvitamin D3 [20(OH)D3], greatly influences its properties, w...
متن کاملPrimary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not o...
متن کامل25-hydroxyvitamin D3 is an active hormone in human primary prostatic stromal cells.
According to the present paradigm, 1alpha,25-dihydroxyvitamin D3 [1alpha,25-(OH)2D3] is a biologically active hormone; whereas 25-hydroxyvitamin D3 (25OHD3) is regarded as a prohormone activated through the action of 25-hydroxyvitamin D3 1alpha-hydroxylase (1alpha-hydroxylase). Although the role of vitamin D3 in the regulation of growth and differentiation of prostatic epithelial cells has been...
متن کاملGene Expression Profiles in Human and Mouse Primary Cells Provide New Insights into the Differential Actions of Vitamin D3 Metabolites
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expr...
متن کامل